CONTRIBUTION FROM THE INDUSTRIAL CHEMICALS RESEARCH LABORATORY, Allied Chemical Corporation, Morristown, New Jersey 07960

The Chemistry of Trifluoramine Oxide. II. Reactions with Inorganic Substrates

BY W. B. FOX, C. A. WAMSER, R. EIBECK, D. K. HUGGINS, J. S. MACKENZIE, AND R. JUURIK

Received September 26, 1968

Trifluoramine oxide oxidizes N₂F₄, N₂O₄, Cl₂, and SF₄ to NF₃, NO₂F, ClF, and SF₆, respectively, the F₃NO being reduced to NOF in each case. These and other reaction studies indicate that oxidations by F3NO involve primarily fluorination rather than oxygenation. Trifluoramine oxide is not readily hydrolyzed by water or aqueous base but is attacked by sulfuric acid. The interaction of F₃NO with fluorinated Lewis acids is also described.

Introduction

As part of a broader study of the chemistry of compounds containing N-F bonds, we have investigated the unusual new compound trifluoramine oxide, F3NO, in some detail. Earlier papers from this laboratory^{1,2} and elsewhere³ have described the synthesis and physical properties of F3NO and given a preliminary account of its chemical behavior. In the present work, reactions of F₃NO with a variety of inorganic substrates were investigated, particular attention being given to those capable of oxidation in order to determine whether F₃NO would function as a fluorinating agent, an oxygenating agent, or both. The behavior of F₃NO toward Lewis acids was also examined, since the binary nitrogen fluorides⁴⁻⁷ (except NF_3) and oxyfluorides^{8,9} have been found to form complexes with such materials.

Results and Discussion

The general pattern that emerges from the reaction studies reported herein is that of trifluoramine oxide behaving as a strong oxidizing agent, as expected of a nitrogen(V) compound. However, the mode of oxidative attack by F₃NO seems to be predominantly one of substrate fluorination to the exclusion of substrate oxygenation. Thus, the relatively straightforward oxidations (fluorinations) of N2F4, N2O4, Cl2, and SF4 by F₃NO produce NF₃, NO₂F, CIF, and SF₆, respectively, with the F₃NO being reduced to NOF in each case. In other cases (see results summarized in Table I) the reactions were sufficiently complex that complete product characterization was not possible, and no reasonable stoichiometry could be inferred from the data. Still, the absence of binary nitrogen fluoride products and the plethora of nitrogen-oxygen products in all cases tended to confirm the thesis that F₃NO behaves more as a fluorinating than an oxygenating agent toward oxidiz-

(5) J. Ruff, Inorg. Chem., 5, 1791 (1966).

- (6) A. R. Young and D. Moy, *ibid.*, 6, 178 (1967).
- (7) J. Ruff, J. Am. Chem. Soc., 87, 1140 (1965). (8) T. Moeller, J. Chem. Educ., 23, 441 (1946).

able materials. This behavior is consistent with the results of thermochemical¹⁰ and spectroscopic¹¹ investigations which indicate a very strong N-O bond and relatively weak N-F bonds in F₃NO.

It is of interest that reactions of F₃NO with even very readily oxidizable substrates (CO, SO₂, N₂F₄, SF₄) generally required heating or the application of ultraviolet radiation, indicating a high activation energy for attack by F₃NO. In this sense, the behavior of F₃NO resembles that of NF3¹² and OF2¹³ which also frequently require considerable activation to undergo thermodynamically favorable reactions. A further manifestation of kinetically-rather than thermodynamically-derived stability may be seen in the relative inertness of F₃NO to hydrolysis. Trifluoramine oxide showed no tendency to react with water and hydrolyzed only very slowly in the presence of strong aqueous NaOH at 90° , though thermochemical data for F₃NO indicate that the heat of hydrolysis (e.g., $F_3NO + 2H_2O \rightarrow HNO_3 +$ 3HF) should be around -75 kcal/mol.¹⁰ Hydrolysis of F₃NO occurs more readily in strong sulfuric acid solutions, which may be related to the ability of strong Lewis acids (vide infra) to abstract fluoride ion from F₃NO, thereby generating the very reactive and hydrolyzable F₂NO+ ion.

Trifluoramine oxide forms isolable 1:1 complexes with SbF_5 , AsF_5 , and BF_3 , but not with PF_5 . The data show that the order of acidities toward F_3NO is, as expected, $SbF_5 > AsF_5 > BF_3 > PF_5$. The ability of $F_{3}NO$ to form stable complexes with the strong Lewis acids SbF₅ and AsF₅ is analogous to the ability of the binary nitrogen fluorides $N_2F_2^{4,5}$ and $N_2F_4^{6,7}$ to form complexes with these acids.¹⁴ However, the fact that F₃NO also forms a 1:1 complex with the weaker acid BF_3 (contrary to an earlier report³c) indicates that $F_{\delta}NO$ may be a somewhat stronger base (fluoride donor) than N_2F_2 and N_2F_4 . (The latter show no evidence of interaction with BF_3 at -78° and only weak association below -120° .^{15,16}) The F₃NO-BCl₃ study, which was aimed at providing further comparison of the basicities

⁽¹⁾ Part I: W. B. Fox, J. S. MacKenzie, E. R. McCarthy, J. R. Holmes, R. F. Stahl, and R. Juurik, Inorg. Chem., 7, 2064 (1968).

⁽²⁾ W. B. Fox, J. S. MacKenzie, N. Vanderkooi, B. Sukornick, C. A. Wamser, J. R. Holmes, R. E. Eibeck, and B. B. Stewart, J. Am. Chem. Soc., 88, 2604 (1966).

^{(3) (}a) N. Bartlett and S. P. Beaton, Chem. Commun., 167 (1966); (b) N. Bartlett, S. P. Beaton, and N. K. Jha, ibid., 168 (1966); (c) N. Bartlett, J. Passmore, and E. J. Wells, *ibid.*, 213 (1966).

⁽⁴⁾ D. Moy and A. R. Young, J. Am. Chem. Soc., 87, 1889 (1965).

⁽⁹⁾ E. Aynsley, G. Hetherington, and P. L. Robinson, J. Chem. Soc., 1119 (1954).

⁽¹⁰⁾ R. King, NBS, private communication.

⁽¹¹⁾ R. Hirschmann, D. F. Harnish, J. R. Holmes, J. S. MacKenzie, and W. B. Fox, to be submitted for publication.

⁽¹²⁾ C. J. Hoffman and R. G. Neville, Chem. Rev., 62, 1 (1962).

⁽¹³⁾ A. G. Streng, *ibid.*, **63**, 607 (1963).

⁽¹⁴⁾ The F₈NO-Lewis acid complexes are known to involve F₂NO+ formation by transfer of fluoride to the Lewis acid, in the same manner as the N_2F_2 and N_2F_4 complexes involve N_2F^+ and $N_2F_3^+$, respectively.

⁽¹⁵⁾ A. D. Craig, Inorg. Chem., 3, 1628 (1964).

⁽¹⁶⁾ W. B. Fox, unpublished results.

$Reactant^a$	Conditions	Products and results
SO_2	Ъ	SO ₃ , SO ₂ F ₂ , SOF ₄ , SiF ₄ ,
		N_2O , NO_2 , $(NO)_2SiF_6$,
		NOSO3F
CO	Ь	COF_2 , CO_2 , CF_4 , NO_2 ,
		SiF_4 , (NO) ₂ SiF_6
$Fe(CO)_5$	F₃NO gas added	Series of mildly explo-
	slowly to liquid	sive flashes; brown
	Fe(CO) ₅ at 25°	solids formed in liq-
		uid; volatile products
		CO, COF ₂ , SiF ₄
COF_2	10,800 psi, 300°, 4 hr	CF ₄ , CF ₃ OOCF ₃ , NOF,
		NO_2
CF₃I	b	C_2F_6 , COF_2 , CF_4 , NO_2
COS	b	SO ₂ , NO, NO ₂ , NOF
SO_3	b	$S_2O_5F_2$, SO_2F_2 , $NOSO_3F$,
		NO_2SO_3F
$LiClO_4$	1600 psi, 100°, 4 hr	$FC1O_3$, NO_2C1 , NO_2 ,
		NO_2F , solids
$Mg(ClO_4)_2$	4400 psi, 100°, 4 hr	$FClO_3$, NO_2F , NO_2 ,
		NOF, solids
H_2SO_4	5 min, 25°	HF, NO ₂ +, SO ₃ F ⁻

TABLE I

REACTIONS OF F₃NO WITH INORGANIC SUBSTANCES

^a Reactant and F_3NO in a 1:1 mole ratio. ^b Ultraviolet irradiation in a quartz bulb at atmospheric pressure with a high-pressure mercury lamp for 2–3 hr.

of F₃NO and N₂F₄ (the latter shows no evidence of interaction with BCl₃ at $-78^{\circ_{15}}$), unfortunately did not provide an unequivocal result. Though it is likely that the solid observed at -78° in the F₃NO-BCl₃ system was the expected 1:1 complex, which would further indicate that F₈NO is a stronger base than N₂F₄, the extensive secondary reactions which followed made definite characterization of the solid impossible. The behavior of F_3NO toward BCl_3 in this instance (*i.e.*, facile oxidation of chloride to elemental chlorine) illustrates the enhancement of F₈NO reactivity as an oxidant in a highly acidic environment. A further example of this is the facile oxidation of HCl to Cl_2 by F_3NO when BF_3 is added to the system. We have observed numerous instances in which vigorous oxidations by F_3NO were catalyzed by small amounts of BF_3 , AsF_5 , or SbF_5 . It is possible that an underlying mechanism for these oxidations involves initial formation of the F₃NO-acid complex which contains the powerfully electrophilic F₂NO⁺ cation.

Experimental Section

Apparatus and Procedures.—Standard high-vacuum techniques were used throughout the investigation. Pressures of oxidizing gases were measured as described earlier,¹ and relative amounts of volatile products, if not readily separable by fractionation, were determined by comparison of their infrared spectra with standard calibrated spectra obtained with a Perkin-Elmer Infracord spectrophotometer. Nmr data were obtained with a Varian V-4302 spectrometer.

Reaction of F₃**NO with SF**₄.—A mixture of F₃NO and SF₄ in a nickel infrared cell (BaF₂ windows) was subjected to 0.5 hr of irradiation with a high-pressure mercury lamp. Infrared analysis of the cell contents showed that half of the F₃NO had been consumed and the only products were NOF (1.2 mmol) and SF₆ (1.3 mmol). The results are best described by the equation $F_3NO + SF_4 \rightarrow NOF + SF_6$.

Reaction of F_3NO with Chlorine.—A mixture of chlorine and F_3NO (25 mmol each) was brought to 400° and 5850 psi in a

well-fluorinated nickel autoclave. After 2 hr, the products were separated by vacuum-line fractionation and found by infrared analysis to be a mixture of ClF (40 mmol, 80% yield) and NOF (22 mmol, 88% yield). The reaction can be represented by the equation $F_8NO + Cl_2 \rightarrow 2 ClF + NOF$.

Reaction of F₃**NO with N**₂**O**₄.—A solution containing 2.5% by weight of F₃NO in N₂O₄ (under 2.3 atm of F₃NO pressure) was formed at 0° in an nmr sample tube. Over a period of several hours at 0°, the F₃NO signal intensity (triplet at ϕ – 364, $J_{\rm NF}$ = 136 Hz) diminished as new signals attributable to NOF (broad at ϕ –480) and NO₂F (broad triplet centered at ϕ –393, $J_{\rm NF}$ = 115 Hz) appeared in the solution. Qualitative area measurements indicated that the total resonances of NOF and NO₂F accounted for the decreased F₃NO signal and that the NO₂F concentration was twice that of the NOF. The reaction occurring was therefore F₃NO + N₂O₄ \rightarrow NOF + 2NO₂F.

Reaction of F₃NO with N₂F₄.—In a run typical of several experiments, F₃NO (1.00 mmol) and N₂F₄ (0.50 mmol) in a 100-ml quartz bulb were completely consumed after 1 hr of irradiation with a high-pressure mercury lamp. The observed products were NF₃ (*ca.* 1 mmol) and an unresolved mixture of NO₂, SiF₄, and solid (NO)₂SiF₆. The latter materials undoubtedly arose through attack of NOF, an expected product, on the silica vessel. When a similar F₃NO–N₂F₄ mixture (2:1 molar ratio) was placed in a well-passivated nickel cell with BaF₂ windows and irradiated for 0.5 hr, only unused F₃NO, NF₃, and NOF (approximately 1:2:1 molar ratio) were observed as products. These data are consistent with the equation F₃NO + N₂F₄ → 2NF₃ + NOF.

Reaction of F₃NO with H₂O.—Gaseous F₃NO was virtually unaffected by contact with liquid water at 25° and was only slowly attacked by 50% aqueous NaOH at 90° (25% hydrolysis in 8 hr). In later work, 50% aqueous NaOH or solid KOH pellets at 25° were used for scrubbing F₃NO to remove impurities such as SiF₄, NO₂, NOF, and NO₂F. The F₃NO recoveries were 95–100%.

Reaction of F₃NO with Iodide Ion.—A measured quantity of F₃NO (0.457 mmol) was added to an excess of deaerated aqueous KI acidified with phosphoric acid. After the mixture was shaken for 5 min at 25°, liberated iodine was titrated with standard thiosulfate solution in the usual manner. Results showed that 1.412 mequiv of I⁻ had been consumed (3.08 mequiv of I⁻/mmol of F₃NO) in good agreement with the equation $3I^- + F_3NO \rightarrow NO + 3F^- + 1.5I_2$.

Reaction of F₈**NO with SbF**₅.—In a typical experiment, SbF₅ (1.0 mmol) was dissolved in 3 ml of anhydrous HF and cooled to -78° . The addition of F₈NO (1.0 mmol) to this solution caused rapid formation of a white precipitate, and subsequent removal of volatile material left a quantitative yield of white microcrystalline F₈NO·SbF₅. *Anal.* Calcd for F₈NO·SbF₅: F, 50.04; Sb, 40.08; N, 4.60. Found: F, 48.30; Sb, 41.35; N, 4.70. The sample underwent no change on heating to 100° but reacted violently with water at 25°.

Reaction of F₈**NO with AsF**₅.—When equimolar amounts of gaseous F₈NO and AsF₅ were allowed to mix at 25°, a white solid formed immediately in the reactor. Elemental analysis of the solid reaction product gave the following results. *Anal.* Calcd for F₈NO·AsF₅: F, 59.17; As, 29.17; N, 5.44. Found: F, 58.70; As, 29.17; N, 5.60. The material exhibited dissociation pressures at 25° of around 10 mm, the gas phase being comprised of equal amounts of F₈NO and AsF₅. The solid fumed in moist air and reacted violently with water.

Reaction of F_3NO with BF_3 .—Measured amounts of F_3NO (1.00 mmol) and BF_3 (3.00 mmol) were combined in a 30-cm³ glass ampoule at -196° . Repeated warming to -130° and chilling to -196° produced a considerable amount of white solid which persisted at -130° , well above the melting points of the reactants. The readily available vapor over the solid at -130° , recovered by vacuum pumping into a collection bulb at -196° for 5 min, was found to be 0.98 mmol of pure BF_3 . No perceptible BF_3 was recovered by an additional 5 min of pumping,

indicating formation of an essentially 1:2 complex $(1.00F_3NO \cdot 2.02BF_3)$. However, continuous high-vacuum pumping for 3 hr from this complex at -120° led to the recovery of an additional 0.95 mmol of BF₃, leaving an adduct of 1:1 composition $(1.00F_8NO \cdot 1.07BF_3)$. Further pumping for 3 hr at -120° produced no additional BF₃, indicating that the 1:1 composition was quite stable at this low temperature. The 1:1 complex also appeared to be stable at -78° (no detectable vapor pressure), but on warming to room temperature the material slowly dissociated completely to gaseous F_3NO and BF_3 , leaving no residue.

Reaction of F_3NO with BCl₃.—Equimolar quantities of F_3NO and BCl₃ (ca. 1 mmol each) were condensed into a glass ampoule at -196° and warmed to -78° . At -78° (considerably above the melting points of the reactants) only a white solid was observed initially, but this became yellow and partially liquefied over a period of 5 min. Upon warming to room temperature, the entire mass vaporized to 1.5 mmol of a mixture comprised (mass spectral and infrared analysis) of approximately equal amounts of NOCl, Cl₂, and BF₃; no BCl₃ remained and only a trace of F_3NO was detectable. These results suggest that the reaction proceeded according to the equation $F_3NO + BCl_3 \rightarrow [F_3NO \cdot BCl_3] \rightarrow Cl_2 + NOCl + BF_3$.

Reaction of F_3NO with HCl.—Millimolar quantities of F_3NO and HCl were essentially unchanged after several days at 25° in a Pyrex ampoule. However, the addition of BF_8 to one reaction mixture (mole ratio $F_3NO:HCl:BF_3 = 1:1:2$) resulted in rapid and extensive reaction within minutes, producing large amounts of SiF₄ (from attack on the glass vessel), Cl₂, and a white solid identified by X-ray diffraction as NOBF₄. No F₃NO remained, indicating that the major reactions were

$$F_{3}NO + 2HCl \longrightarrow NOF + Cl_{2} + 2HI$$

 $NOF + BF_3 \longrightarrow NOBF_4$

Other Reactions .--- In a number of additional studies, either no reaction occurred between F₃NO and the inorganic substrate or the reactions were sufficiently complex that complete product characterization and material balances were unobtainable and no reasonable stoichiometry could be inferred from the data. In the first category, F3NO under ambient conditions did not react with HF, FClO₃, ClF, ClF₃, ClF₅, BrF₃, BrF₅, IF₅, PF₃, PF₅, AsF₈, CO, CO2, CF3OF, SO2, SO2F2, or FSO2OOSO2F. Trifluoramine oxide was found by nmr measurement to be soluble in the liquid phases of some of these materials without visible effect on the nmr spectrum of either the FaNO or solvent. The solvent, temperature, and mole per cent of F₃NO in solution follow: ClF₅, 0°, 20%; SO₂, -30° , >20%; SO₂F₂, -78° , >20%; ClF₈, -78° , 10%; HF, -78° , 2%; IF₅, 25°, slightly soluble. The complex F3NO reactions which were observed in this study are summarized in Table I. The products listed were only those present to the extent of more than 5-10% of the reaction mass, as determined by a combination of infrared spectroscopy, mass spectrometry, and wet-chemical analyses.

Acknowledgment.—This research was supported by the Advanced Research Projects Agency, Propellant Chemistry Office, and was monitored by Army Research Missile Command, Redstone Arsenal, Huntsville, Ala., under Contract No. DA-30-069-ORD-2638.

Contribution from the Industrial Chemicals Division, Allied Chemical Corporation, Morristown, New Jersey 07960

The Chemistry of Trifluoramine Oxide. III. Lewis Acid Complexes of F_3^5NO . Structure and Reactions of the F_2NO^+ Ion

By C. A. WAMSER, W. B. FOX, B. SUKORNICK, J. R. HOLMES, B. B. STEWART, R. JUURIK, N. VANDERKOOI, AND D. GOULD

Received May 20, 1968

Complexes of F_2NO with the Lewis acids BF_3 , AsF_5 , and SbF_5 were found to exist in the ionic form $F_2NO^+A^-$, where $A^- = BF_4^-$, AsF_6^- , or SbF_6^- . Infrared spectra of the solid complexes as well as infrared, nmr, and conductivity studies of the complexes dissolved in polar fluorinated solvents confirm their ionic constitution and indicate that the F_2NO^+ cation exhibits the same planar geometry as the isoelectronic COF₂ molecule.

Introduction

Previous papers in this series have described the synthesis and characterization of the compound trifluoramine oxide, F_8NO ,¹ and cited its reactions with a variety of inorganic substrates.² The complexes of F_8NO with the Lewis acids BF_8 , AsF_5 , and SbF_5 described in the latter of these papers were investigated further in a study of their structures and potential use in the metathetical synthesis of ionic derivatives of F_8NO . Examination of the F_8NO -Lewis acid complexes by nmr and infrared spectroscopy reveals a common structural feature attributable to the previously unknown cation F_2NO^+ .

Experimental Section

The manipulation of F_3NO and other compounds in the course of this study was carried out in Monel Metal vacuum systems provided with suitable valves and fittings for connection of gas cylinders, reaction vessels, gas infrared cells, and Plaskon nmr sample tubes.³ Pressures were measured through a sensitive all-nickel pressure transmitter connected to a mercury manometer and pressure-balancing system.⁴ The all-plastic apparatus used in manipulating corrosive fluorinated solvent systems (HF, SbF₅, etc.) were developed as a part of this investigation and have been described elsewhere.³

⁽¹⁾ W. B. Fox, J. S. MacKenzie, E. R. McCarthy, J. R. Holmes, R. F. Stahl, and R. Juurik, *Inorg. Chem.*, **7**, 2064 (1968).

⁽²⁾ W. B. Fox, C. A. Wamser, R. Eibeck, D. K. Huggins, J. S. MacKenzie, and R. Juurik, *ibid.*, **8**, 1247 (1969).

⁽³⁾ C. A. Wamser and B. B. Stewart, Rev. Sci. Instr., 36, 397 (1965).

⁽⁴⁾ S. Cromer, "The Electronic Pressure Transmitter and Self-Balancing Relay," Columbia University, New York, N. Y., June 20, 1944. AEC Declassified, March 20, 1947 (MDDC).